Real Time & Embedded Systems

C Language Programming
Selected Topics

Agenda

* A brief history of C

* Logical and Bit operations
e Shifting and Inversion

* Arrays and Pointers

e C Structures (struct)

e Constant qualifier (const)
* Symbolic Names (typedef)

A brief history of C

@ A Bit of History

Software Engineering

Rochester Institute
of Technology

* Developed in the early to mid 70s
— Dennis Ritchie as a systems programming language.
— Adopted by Ken Thompson to write Unix on a the PDP-11.

* Atthetime:
— Many programs written in assembly language.

— Most systems programs (compilers, etc.) in assembly
language.

— Essentially ALL operating systems in assembly language.
* Proof of Concept

— Even small computers could have an OS in a HLL.
— Small: 64K bytes, 1us clock, 2 MByte disk.
— We ran 5 simultaneous users on this base!

@ Why C?

Software Engineering

Rochester Institute
of Technology

Cis a good choice for embedded systems programming because
— It is a relatively defeatured, simple to learn, understand, program

and debug.

— C Compilers are available for almost all embedded devices in use
today!!

— Many/most support libraries for embedded systems are written in
C.

— Unlike assembly, C has advantage of processor-independence and
is not specific to any particular microprocessor/ microcontroller or
any system. It is very portable.

— Cis a mid- to high-level language that is is fairly efficient (size,
speed)

— It supports access to I/O and provides ease of management of
large embedded projects.

Logical and Bitwise Operators

@ Logical Operators

Software Engineering

Rochester Institute
of Technology

* Alogical operator is used to combine 2 or more conditions in
an expression.

* Logical AND - &&

— Operator && returns true when both the conditions in consideration
are true; else false

e Logical OR- ||

— Operator | | returns true when either or both the conditions in
consideration are true; else false

* Logical NOT - !

— Operator ! returns true when either or both the conditions in
consideration are true; else false

* Logical XOR
— In the Boolean sense, this is just != (not equal)

@ Logical example

Software Engineering

Rochester Institute
of Technology

int a =10, b =4, c = 10, d = 20;

// logical AND example
if (a > b & c == d)

printf("a is greater than b AND c is equal to d\n");
// doesn’t print because c !=d

// logical OR example
if (a > b || c == d)
printf("a is greater than b OR c is equal to d\n");
// NOTE: because a>b, the clause c==d is not evaluated

// logical NOT example
if (!a)

printf("a is zero\n"); // doesn’t print because a != 0

)

Software Engineering

Rochester Institute
of Technology

Bitwise Operators

* A key feature of C essential to RT & ES programming is the set

of bit manipulations

 Microcontrollers are filled with pages and pages of registers
that control MCU peripheral hardware. These are all bit-

based definitions.

 Some peripherals
from STM32
Reference Manual...

ﬂ 7 Clock recovery system (CRS) (only valid for STM32L496xx/4A6xx devices)
L_.,] 8 General-purpose I/0s (GP1O)

ﬂ 8 System configuration controller (SYSCFG)

ﬂ 10 Peripherals interconnect matrix

ﬂ 11 Direct memory access controller (DMA)

D 12 Chrom-Art Accelerator™ controller (DMAZD)

ﬂ 13 Nested vectored interrupt controller (NVIC)

D 14 Extended interrupts and events controller (EXTI)
L_.,] 15 Cyclic redundancy check calculation unit (CRC)
ﬂ 16 Flexible static memory controller (FSMC)

|:] 17 Quad-SPI interface (QUADSPI)

[1 18 Analog-to-digital converters (ADC)

ﬂ 19 Digital-to-analog converter (DAC)

Software Engineering

Rochester Institute
of Technology

23.5

OPAMP registers

23.51 OPAMP1 control/status register (OPAMP1_CSR)
Address offset: 0x00
Reset value: 0x0000 0000
3 30 28 28 27 26 25 24 23 21 20 19 18 7 16
OP#_
RANGE
W
15 14 13 12 11 10 g B 7 5 4 3 2 1 o
CAL | USER | caL VP OP
out | TRm | se. [cALow SEL VM_SEL PGA_GAIN OPAMODE LpM |OPAEN
r W nw A i v | nw Y | v Ly} | L] W na
Bit 31 OPA_RANGE: Operational amplifier power supply range for stability
All ADP must be in power down to allow AOP-RANGE bit write. It applies to all AOP
embedded in the product.
0: Low range (VDDA < 2. 4V)
1: High range (VDDA = 2.4V)
Bits 30:16 Reserved, must be kept at reset value.
Bit 15 CALOUT: Operational amplifier calibration output
During calibration mode offset is timmed when this signal toggle.
Bit 14 USERTRIM: allows to switch from ‘factory’ AOP offset timmed values to AOP offset ‘user’
trimmed values
This bit is active for both mode normal and low-power.
0: ‘factory’ trim code usad
1: ‘user trim code used
Bit 13 CALSEL: Calibration selection
0: NMOS calibration (200mV applied on OPAMP inputs)
1: PMOS calibration (VDDA-200mV applied on OPAMP inputs)
Bit 12 CALON: Calibration mode enabled

0: Mormal mode

1: Calibration mode (all switches opened by HW)

Software Engineering

Rochester Institute
of Technology

3864 RTC initialization and status register (RTC_ISR)

This register is write protected (except for RTC_ISR[13:8] bits). The write access procedure
is described in RTC register write protection on page 1193.

Address offset: 0x0C
Backup domain reset value: 0x0000 0007
System reset: not affected except INIT, INITF, and RSF bits which are cleared to '0°

E]| 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16
ITSF |RECALFF

rc_wl r

15 14 13 12 11 10 g] T & 5 4 3 2 1]
TAMPIF [TAMP2F | TAMPAF [TSOVF | TSF |[WUTF | ALRBF [ALRAF | INIT [IMITF | RSF | INITS | SHPF | WUTWF 'Q'HI;.IT‘:B ALRAWF

re_wl | re_wD | ore_wO | rcowid | oreowd [rcowdd | ore_wd | nc_wid nw r rc_wil r r r r r

Bits 31:18 Reserved, must be kept at reset value

Bit 17 ITSF: Internal tTime-stamp flag
This flag is set by hardware when a time-stamp on the internal event oceurs.

This flag is cleared by software by writing 0, and must be cleared together with TSF bit by
writing 0 in both bits.

Bit 16 RECALPF: Recalibration pending Flag

The RECALPF status flag is automatically set to *1" when software writes to the RTC_CALR
register, indicating that the RTC_CALR register is blocked. When the new calibration settings
are taken into account, this bit returns to *0". Refer to Re-calibration on-the-fly.

Bit 15 TAMP3F: RTC_TAMP3 detection flag
This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP3
input.
It is cleared by software writing 0
Bit 14 TAMP2F: RTC_TAMP2 detection flag
This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP2
input.
It is cleared by software writing 0

)

C Bitwise Operators

Software Engineering

Rochester Institute
of Technology

C has 6 operators for performing bitwise operations on integers

Sopersor |Meaning |

& Bitwise AND Result is 1 if both bits are 1
| Bitwise OR Result is 1 if either bitis 1
A Bitwise XOR Result is 1 if both bits are different
>> Right shift
<< Left shift

~ Ones complement The logical invert, same as NOT

Bitwise Boolean examples

char j = 11; // 00 01011-=11
char k = 14; // ©0 001110 =14

Bitwise Boolean Operators
charm =73 &k; // ©0006010160 =10
charn=73 | k; // 00001111 =15
char p=3j ~k; // 06060001601

Il
U1

NOTE: This is a logical (not Boolean) operation
bool g = j && k; // true ==
bool g = 0 && k; // false == 0

Shifting and Inversion

Shifting

Shifting

char j = 11; // 0 0 061011-=11

char k = j<k1; // 0600101160 =22 (j*2)
charm=j>1; // 00000101=5 (j/2)

Shifting

char sl1, s2, s3, s4;

s1=-11; // 11110101 -11
s2=s1>>1; // 11111010 -6
s3=117; // 611106101 117
S4=53>>1; // ©0 100000 58

// sign extension!

unsigned char ul, u2;

ul=255; // 1111061061 245

u2=ul>>1; //©1111111 122
// no sign extension!

Inversion

Logical invert

char j = 11; //] =00001011-= 11
char k = ~j; // k=11110100 = 244
// Note: j + k = 255

Arrays and pointers

@ Array ldentifiers & Pointers

message

 char message_array[] = “Hello” ; [AlelTGoia

* Question: So what exactly is message?

* Answer:In C, an array name is a constant
pointer that references the Oth element of the
array's storage.

e Constant means it cannot be changed (just as
we can't change the constant 3).

Consequences - Part 1

message

 char message_array[] = “Hello” ; [AlelTGoia

e char *message = “Hello”;

Question: What is *message?

e *message == ‘H’; //anarray pointer. It points to the
// start of the array (to Ot" element)

Read *message as “what message points to”

What is another expression for message?
* message == &message[0]; message[0]=="H’

©
Pointer Variables and Arrays - 1

Software Engineering

Rochester Institute
of Technology

char *hi = “Hello” ;
Allocates space and initializes a constant string “Hello”, then
allocates space for pointer hi and initializes it to point to the 0t element.

char message[] = “Greetings!” ;
Allocates space for the array message and initializes its contents to the string

“Greetings!”.

char *p _mesg = message ;
Allocates space for pointer p_mesg and initializes it to point to message.

charch; // Declares ch as a char
p_mesg++ ; // Advance p_mesg by one element (char in this case)
ch=*p mesg; //Setchtothe character p_mesg points to (in this case 'r').

C Structures

@ C Structs

Software Engineering
Rochester Institute
of Technology

e A structis a way of grouping named,
heterogeneous data elements that represent a
coherent concept.

)

C Structs

Software Engineering

Rochester Institute
of Technology

e Astructis a way of grouping named, heterogeneous data elements that
represent a coherent concept.

 Example:

#define MAXNAME (20)

struct person {
char name[MAXNAME+1] ;
int age ;
double income ;

)

C Structs

Software Engineering

Rochester Institute
of Technology

* Question: What is an object with no methods and only instance variables
public?

 Answer: A struct! (well, sort of).

e Astructis a way of grouping named, heterogeneous data elements that
represent a coherent concept.

* Example: coherent concept -

#define MAXNAME (20) the information

recorded for a person.
struct (person {

int age ;
double income ;

} o

)

C Structs

Software Engineering

Rochester Institute
of Technology

* Question: What is an object with no methods and only instance variables
public?

 Answer: A struct! (well, sort of).

e Astructis a way of grouping named, heterogeneous data elements that
represent a coherent concept.

* Example:

heterogeneous - the

fields have different
struct person { types

char name[MAXNAME+1];
int-age
double)income ;

#define MAXNAME (20)

@ C Structs

Software Engineering

Rochester Institute
of Technology

* Question: What is an object with no methods and only instance variables
public?

 Answer: A struct! (well, sort of).

e Astructis a way of grouping named, heterogeneous data elements that
represent a coherent concept.

 Example:

the field names in

#define MAXNAME (20) the struct

struct person {
char name[MAXNAME+1] ;
int age ;
double 1income ;

)

Using Structs

Software Engineering

Rochester Institute
of Technology

e Declaration:
struct person {
char name[MAXNAME+1] ; // explicit size known

char *title; // a pointer has explicit size
char profession[]; // ILLEGAL, size not known
int age ;

double income ;
}os
e Definitions:
struct person mike, pete, chris ;

* Assignment / field references ('dot' notation):

mike = pete ; // this does a shallow copy!!
// If the structure contains pointers, the pointers will be
// copied, but not what they point to. Thus, after the copy,
// there will be two pointers pointing to the same memory.

pete.age = chris.age + 3;

)

Using Structs

Software Engineering

Rochester Institute
of Technology

* Note: Space allocated for the whole struct at definition.

e Struct arguments are passed by value (i.e., copying)

WRONG
void give_raise(struct person p, double pct) {
p.income *= (1 + pct/100) ;
return ;

}

give_raise(mike, 10.0); // what is mike’s income after raise

RIGHT
struct person give_raise(struct person p, double pct) {
p.income *= (1 + pct/100) ;
return p ;

}

mike = give_raise(mike, 10.0) ; // what is mike’s income after raise?

@ Using Structs pointers

Software Engineering

Rochester Institute
of Technology

e Better if you can pass a pointer to the structure

void give_raise(struct person *p, double pct) {
p->income *= (1 + pct/100) ;
return ;

}

give_raise(&mike, 10.0) ;

Const qualifier

S

Software Engineering

Const qualifier

* The const qualifier applied to a declared variable
states the value cannot be modified.

e Using this feature can help prevent coding errors.

e Good for settings and configurations.

const char * - a pointer to a const char
the value being pointed to can't be changed but the pointer can.

char * const - Is a constant pointer to a char
the value can be changed, but the pointer can't

Order can be confusing...

Const qualifier cont.

« To avoid confusion, always append the const qualifier.
int * mutable pointer_to mutable int;

int const * mutable pointer to constant int;

int * const constant pointer to mutable int;

int const * const constant ptr to constant int;

Symbolic Names

typedef

S
‘Symbolic Type Names - typedef

Softwar Eg

chn g

. Suppose we have a pricing system that prices goods
by weight.
— Weight is in pounds, and is a double precision number.
— Price is in dollars, and is a double precision number.

— Goal: Clearly distinguish weight variables from price
variables.

©
Symbolic Type Names - typedef

Software Engineering

Rochester Institute
of Technology

 Suppose we have a pricing system that prices goods by
weight.
— Weight is in pounds, and is a double precision number.
— Priceis in dollars, and is a double precision number.
— Goal: Clearly distinguish weight variables from price variables.

 Typedef to the rescue:
— typedef declaration ;
Creates a new "type" with the variable slot in the declaration.

)

Symbolic Type Names - typedef

Software Engineering

Rochester Institute
of Technology

 Suppose we have a pricing system that prices goods by
weight.
— Weight is in pounds, and is a double precision number.
— Priceis in dollars, and is a double precision number.
— Goal: Clearly distinguish weight variables from price variables.

 Typedef to the rescue:

— typedef declaration ;Creates a new "type" with the variable slot in the
declaration.

e Examples:

typedef double PRICE t; // alias for double to declare price variables
typedef double WEIGHT t; // alias for double to declare weight variables
PRICE t p ; // double precision value that's a price
WEIGHT _t 1lbs ; // double precision value that's a weight

@ typedef In Practice

Software Engineering

Rochester Institute
of Technology

 Symbolic names for array types

#define MAXSTR (100)

typedef char LONG_STRING_t[MAXSTR+1] ;

LONG_STRING_t line ;
LONG_STRING t buffer ;
LONG_STRING t *p long string;

@ typedef In Practice

Software Engineering

Rochester Institute
of Technology

* “Symbolic names for array types

#define MAXSTR (100)
Typedef char LONG_STRING_ t [MAXSTR+1] ;

LONG_STRING t 1line ;
LONG_STRING t 1long string;

* Shorter name for struct types:

typedef struct {
LONG_STRING_t label ; // name for the point (fixed length)

double x ; // X-coordinate
double vy ; // y-coordinate
} POINT t;

POINT_t origin ;
POINT_t focus ;
POINT_t *p point = origin;

