
Real Time & Embedded Systems

C Language Programming

Selected Topics

Agenda

• A brief history of C

• Logical and Bit operations

• Shifting and Inversion

• Arrays and Pointers

• C Structures (struct)

• Constant qualifier (const)

• Symbolic Names (typedef)

A brief history of C

A Bit of History

• Developed in the early to mid 70s
– Dennis Ritchie as a systems programming language.
– Adopted by Ken Thompson to write Unix on a the PDP-11.

• At the time:
– Many programs written in assembly language.
– Most systems programs (compilers, etc.) in assembly

language.
– Essentially ALL operating systems in assembly language.

• Proof of Concept
– Even small computers could have an OS in a HLL.
– Small: 64K bytes, 1μs clock, 2 MByte disk.
– We ran 5 simultaneous users on this base!

Why C?

C is a good choice for embedded systems programming because
– It is a relatively defeatured, simple to learn, understand, program

and debug.
– C Compilers are available for almost all embedded devices in use

today!!
– Many/most support libraries for embedded systems are written in

C.
– Unlike assembly, C has advantage of processor-independence and

is not specific to any particular microprocessor/ microcontroller or
any system. It is very portable.

– C is a mid- to high-level language that is is fairly efficient (size,
speed)

– It supports access to I/O and provides ease of management of
large embedded projects.

Logical and Bitwise Operators

Logical Operators

• A logical operator is used to combine 2 or more conditions in
an expression.

• Logical AND - &&
– Operator && returns true when both the conditions in consideration

are true; else false

• Logical OR - ||
– Operator || returns true when either or both the conditions in

consideration are true; else false

• Logical NOT - !
– Operator ! returns true when either or both the conditions in

consideration are true; else false

• Logical XOR
– In the Boolean sense, this is just != (not equal)

Logical example

int a = 10, b = 4, c = 10, d = 20;

// logical AND example

if (a > b && c == d)

printf("a is greater than b AND c is equal to d\n");
// doesn’t print because c != d

// logical OR example

if (a > b || c == d)

printf("a is greater than b OR c is equal to d\n");

// NOTE: because a>b, the clause c==d is not evaluated

// logical NOT example

if (!a)

printf("a is zero\n"); // doesn’t print because a != 0

Bitwise Operators

• A key feature of C essential to RT & ES programming is the set
of bit manipulations

• Microcontrollers are filled with pages and pages of registers
that control MCU peripheral hardware. These are all bit-
based definitions.

• Some peripherals
from STM32
Reference Manual…

C Bitwise Operators

Operator Meaning

& Bitwise AND Result is 1 if both bits are 1

| Bitwise OR Result is 1 if either bit is 1

^ Bitwise XOR Result is 1 if both bits are different

>> Right shift

<< Left shift

~ Ones complement The logical invert, same as NOT

C has 6 operators for performing bitwise operations on integers

Bitwise Boolean examples

char j = 11; // 0 0 0 0 1 0 1 1 = 11

char k = 14; // 0 0 0 0 1 1 1 0 = 14

Bitwise Boolean Operators

char m = j & k; // 0 0 0 0 1 0 1 0 = 10

char n = j | k; // 0 0 0 0 1 1 1 1 = 15

char p = j ^ k; // 0 0 0 0 0 1 0 1 = 5

NOTE: This is a logical (not Boolean) operation

bool q = j && k; // true == 1

bool q = 0 && k; // false == 0

Shifting and Inversion

Shifting

Shifting

char j = 11; // 0 0 0 0 1 0 1 1 = 11

char k = j<<1; // 0 0 0 1 0 1 1 0 = 22 (j*2)

char m = j>>1; // 0 0 0 0 0 1 0 1 = 5 (j/2)

Shifting

char s1, s2, s3, s4;

s1=-11; // 1 1 1 1 0 1 0 1 -11

s2=s1>>1; // 1 1 1 1 1 0 1 0 -6

s3=117; // 0 1 1 1 0 1 0 1 117

s4=s3>>1; // 0 0 1 0 0 0 0 0 58

// sign extension!

unsigned char u1, u2;

u1=255; // 1 1 1 1 0 1 0 1 245

u2=u1>>1; // 0 1 1 1 1 1 1 1 122

// no sign extension!

Inversion

Logical invert

char j = 11; // j = 0 0 0 0 1 0 1 1 = 11

char k = ~j; // k = 1 1 1 1 0 1 0 0 = 244

// Note: j + k = 255

Arrays and pointers

Array Identifiers & Pointers

• char message_array[] = “Hello” ;

• Question: So what exactly is message?

• Answer: In C, an array name is a constant
pointer that references the 0th element of the
array's storage.

• Constant means it cannot be changed (just as
we can't change the constant 3).

H le l \0o

message

Consequences - Part 1

• char message_array[] = “Hello” ;

• char *message = “Hello”;

Question: What is *message?
• *message == ‘H’; // an array pointer. It points to the

// start of the array (to 0th element)

Read *message as “what message points to”

What is another expression for message?
• message == &message[0]; message[0]==‘H’

H le l \0o

message

Pointer Variables and Arrays - 1

char *hi = “Hello” ;
Allocates space and initializes a constant string “Hello”, then
allocates space for pointer hi and initializes it to point to the 0th element.

char message[] = “Greetings!” ;
Allocates space for the array message and initializes its contents to the string
“Greetings!”.

char *p_mesg = message ;
Allocates space for pointer p_mesg and initializes it to point to message.

char ch ; // Declares ch as a char
p_mesg++ ; // Advance p_mesg by one element (char in this case)
ch = *p_mesg ; // Set ch to the character p_mesg points to (in this case 'r').

C Structures

C Structs

• A struct is a way of grouping named,
heterogeneous data elements that represent a
coherent concept.

C Structs

• A struct is a way of grouping named, heterogeneous data elements that
represent a coherent concept.

• Example:

#define MAXNAME (20)

struct person {

char name[MAXNAME+1] ;

int age ;

double income ;

} ;

• Question: What is an object with no methods and only instance variables
public?

• Answer: A struct! (well, sort of).

• A struct is a way of grouping named, heterogeneous data elements that
represent a coherent concept.

• Example:

#define MAXNAME (20)

struct person {

int age ;

double income ;

} ;

C Structs

coherent concept -
the information
recorded for a person.

C Structs

• Question: What is an object with no methods and only instance variables
public?

• Answer: A struct! (well, sort of).

• A struct is a way of grouping named, heterogeneous data elements that
represent a coherent concept.

• Example:

#define MAXNAME (20)

struct person {

char name[MAXNAME+1];

int age ;

double income ;

} ;

heterogeneous - the
fields have different
types

C Structs

• Question: What is an object with no methods and only instance variables
public?

• Answer: A struct! (well, sort of).

• A struct is a way of grouping named, heterogeneous data elements that
represent a coherent concept.

• Example:

#define MAXNAME (20)

struct person {

char name[MAXNAME+1] ;

int age ;

double income ;

} ;

the field names in
the struct

Using Structs
• Declaration:

struct person {

char name[MAXNAME+1] ; // explicit size known

char *title; // a pointer has explicit size

char profession[]; // ILLEGAL, size not known

int age ;

double income ;

} ;

• Definitions:

struct person mike, pete, chris ;

• Assignment / field references ('dot' notation):
mike = pete ; // this does a shallow copy!!

// If the structure contains pointers, the pointers will be
// copied, but not what they point to. Thus, after the copy,
// there will be two pointers pointing to the same memory.

pete.age = chris.age + 3;

Using Structs

• Note: Space allocated for the whole struct at definition.

• Struct arguments are passed by value (i.e., copying)
WRONG

void give_raise(struct person p, double pct) {
p.income *= (1 + pct/100) ;
return ;

}

give_raise(mike, 10.0); // what is mike’s income after raise

RIGHT
struct person give_raise(struct person p, double pct) {

p.income *= (1 + pct/100) ;
return p ;

}

mike = give_raise(mike, 10.0) ; // what is mike’s income after raise?

• Better if you can pass a pointer to the structure

Using Structs pointers

void give_raise(struct person *p, double pct) {
p->income *= (1 + pct/100) ;
return ;

}

give_raise(&mike, 10.0) ;

Const qualifier

Const qualifier

• The const qualifier applied to a declared variable
states the value cannot be modified.

• Using this feature can help prevent coding errors.

• Good for settings and configurations.

const char * - a pointer to a const char
the value being pointed to can't be changed but the pointer can.

char * const - is a constant pointer to a char
the value can be changed, but the pointer can‘t

Order can be confusing…

Const qualifier cont.

• To avoid confusion, always append the const qualifier.

int * mutable_pointer_to_mutable_int;

int const * mutable_pointer_to_constant_int;

int * const constant_pointer_to_mutable_int;

int const * const constant_ptr_to_constant_int;

Symbolic Names

typedef

Symbolic Type Names - typedef

• Suppose we have a pricing system that prices goods
by weight.

– Weight is in pounds, and is a double precision number.

– Price is in dollars, and is a double precision number.

– Goal: Clearly distinguish weight variables from price
variables.

Symbolic Type Names - typedef

• Suppose we have a pricing system that prices goods by
weight.
– Weight is in pounds, and is a double precision number.

– Price is in dollars, and is a double precision number.

– Goal: Clearly distinguish weight variables from price variables.

• Typedef to the rescue:
– typedef declaration ;

Creates a new "type" with the variable slot in the declaration.

Symbolic Type Names - typedef

• Suppose we have a pricing system that prices goods by
weight.
– Weight is in pounds, and is a double precision number.

– Price is in dollars, and is a double precision number.

– Goal: Clearly distinguish weight variables from price variables.

• Typedef to the rescue:
– typedef declaration ;Creates a new "type" with the variable slot in the

declaration.

• Examples:
typedef double PRICE_t; // alias for double to declare price variables

typedef double WEIGHT_t; // alias for double to declare weight variables

PRICE_t p ; // double precision value that's a price

WEIGHT_t lbs ; // double precision value that's a weight

typedef In Practice

• Symbolic names for array types

#define MAXSTR (100)

typedef char LONG_STRING_t[MAXSTR+1] ;

LONG_STRING_t line ;

LONG_STRING_t buffer ;

LONG_STRING_t *p_long_string;

typedef In Practice
• Symbolic names for array types

#define MAXSTR (100)

Typedef char LONG_STRING_t [MAXSTR+1] ;

LONG_STRING_t line ;

LONG_STRING_t long_string;

• Shorter name for struct types:

typedef struct {

LONG_STRING_t label ; // name for the point (fixed length)

double x ; // x-coordinate

double y ; // y-coordinate

} POINT_t;

POINT_t origin ;

POINT_t focus ;

POINT_t *p_point = origin;

